OVERVIEW OF BIOANALYTICAL TECHNIQUES TO SUPPORT DEVELOPMENT OF siRNA THERAPEUTICS

BROOKE ROCK, TRANSLATIONAL SCIENCES ASCPT, 2018

Pioneering science delivers vital medicines"

OVERVIEW OF PRESENTATION ON BIOANALYTICAL TECHNIQUES TO MEASURE OLIGONUCLEOTIDE THERAPEUTICS (siRNA)

- Brief overview of RNAi mechanism and history of siRNA development
- Comparison of siRNA modality to small molecule and large molecule therapeutics
- Discussion on bioanalytical measurements to inform translational of preclinical data to clinical dose
 - Focus of GalNac-siRNA constructs targeted to the liver
- Consideration for delivery to other tissues

HISTORY TO THE DISCOVERY OF siRNA: CHEMICAL MODIFICATIONS & ASGPR HAVE DRIVEN siRNA EVOLUTION

https://www.nature.com/articles/nrd.2018.20

NATURAL MECHANISM OF RNA INTERFERENCE:

RNA interference has an important role in defending cells against parasitic nucleotide sequences, and influences development

SIRNA IN COMPARISON TO CLASSIC SMALL MOLECULE AND LARGE MOLECULES THERAPEUTICS

Typical small molecule Bioanalytical Techniques

LC/MS for drug Measurements and Metabolite ID

Potential for DDI (co-mediations)

Phenotyping to understand Magnitude of clearance pathways

Typical large molecule Bioanalytical Techniques

Immunoassay based Assays for drug measurements

Immunogenicity assays

Role of target in clearance And efficacy

All modalities rely on multiple measures to aid in translate of preclinical results into clinical setting

BIOPHYSICAL CHARACTERISTIC DIFFERENCE OF EACH MODALITY: WHAT ARE THE CRITICAL PIECES FOR siRNA?

Property	Small Molecule	Large Molecule	siRNA
Common Administration Route	Oral	SC; IV	SC; IV
Physical Chemical Properties	MW<600 LogP>2	MW>150 kDa pl= 5-9	MW~ 15kDa Negative charge
Distribution/Clearance	Equilibration of unbound drug allow activity intracellular	Can be driven by target antigen; FcRn recycling	Can be driven by delivery vehicle or target ligand
Metabolism	Hepatic metabolism, transporters	Catabolism to amino acids Limited metabolism	Nuclease activity (blood, at target); metabolism of target ligand
Pharmacodynamics	Direct relationship to plasma kinetics	Indirect or direct models link PD to serum kinetics	Tissue and subcellular kinetics are more relevant

MODELING SIRNA MECHANISM OF ACTION: A CLOSER LOOK AT LIVER TARGETED DELIVERY

1. Saturation of the ASGR occurs at concentrations > 35 mg, the # of receptors per cell ~500,000 Spiess. M. (1990). *Biochemistry*, 29(43), 10009–10018

2. Release from the endosome is rate-limiting step (best case 2% dose) _{Gilleron, J et al. Nature Biotechnology 31: 7 (2013)}

3. The mean recylcing time of ASGR is 5-13 mins Harrison, N et al. JBC 14:1 (1981)

4.siRNA binding to RISC (RNA induced silencing complex) in the cytosol cause unwinding of the duplex and binding to mRNA target to silence/knockdown protein

Figure presented by Alnylam at DIA/FDA Oligonucleotide Based Therapeutic Conference, 2015

WHAT IS RISC?

- RISC = RNA-induced silencing complex, mediates posttranscriptional gene silencing
 - Dicer RNase III family member
 - TRBP (HIV transactivating response RNA-binding protein) orientates siRNA loading
 - Ago2 endonuclease, catalytic core of RISC
- Phase I: Programming siRNA loading into Ago2
- Phase II: Execution cleavage of mRNA target complimentary to antisense (guide) strand of siRNA
- Repeat: Catalytic Process

Journal of Cell Science 123:1183-1189 (2010)

A CLOSER LOOK AT THE MECHANISM OF ACTION FOR LIVER-TARGETED SIRNA MOLECULES: SIMPLIFYING TO RATE CONSTANTS

- Blood Pharmacokinetics is not sufficient to describe the PK-PD of siRNA mechanism
- Two compartment modeling of liver pharmacokinetics can describes the long duration of effect

Lag time is observed between peak liver concentration and maximum KD

A CLOSER LOOK AT THE MECHANISM OF ACTION FOR LIVER-TARGETED SIRNA MOLECULES: SIMPLIFYING TO RATE CONSTANTS

WHAT TOOLS ARE AVAILABLE TO INFORM MODELING: OVERVIEW OF BIOANALYTICAL ASSAY PLATFORMS

- Hybridization-based assays
 - Watson-Crick base pairing mechanism
 - Enzyme involved
 - qPCR and digital PCR
 - Hybridization-ELISA
- Chromatographic-based assays
 - HPLC-UV
 - Hybridization LC-fluorescence
 - LC-HRAM or LC-MS/MS
 - Gel chromatography

Bioanalysis, 2016, 8(2), 143-155

A CLOSER LOOK AT THE MECHANISM OF ACTION FOR LIVER-TARGETED SIRNA MOLECULES: SIMPLIFYING TO RATE CONSTANTS

AGO2 PULLDOWN ASSAY TO MEASURE AMOUNT OF SIRNA BOUND TO RNA-INDUCED SILENCING COMPLEX (RISC)

 Commercially available kit from WAKO Chemical and previously published data* was utilized to pulldown AGO2 from liver lysate and in vivo from PK-PD studies

*Methods modified Nucleic Acids Research 45:1469-1478 (2017)

LINKING PRECLINICAL MEASUREMENTS TO SCALING HUMAN DOSE

Measurement of siRNA post 3 mg/kg dose (rat)

EXAMPLE OF PK-PD MODELING CONFIRMING HUMAN DOSE SELECTION AND PD OBSERVED IN THE CLINIC

Utilize the model to predict that doses greater than

80 mg would not increase efficacy

The PK-PD model accurately described onset, SS and recovery phases, based on liver PK & RISC loading (rat)

Husain Attarwala, Varun Goel, Kate Madigan, Akin Akinc, and Gabriel J. Robbie Presentation July 10th 2017

SUMMARY OF GALNAC CONJUGATES AND PK-PD PREDICTIONS

- Mechanism of siRNA silencing via GalNac delivered constructs to the liver have substantially increased in the last five years
- Some parameters are still empirical; however bioanalytical techniques sensitive enough to measure drug levels throughout the duration of PD respond have improved modeling efforts
- Next step for siRNA modality is unlocking delivery to tissues beyond the liver

QUESTIONS RELATED TO DISEASE INTERVENTION WITH SIRNA TARGETING THERAPEUTICS TO OTHER TISSUES

Many more hurdles targeting other tissues....

Feasibility for targeting extra-hepatic tissues

Can highly stabilized RNAs now allow for the pursuit of targets outside of liver targets

Alternative ligands (peptides, small molecules)

TAKE HOME MESSAGES

- Sensitive bioanalytical tools for siRNA are important in informing kinetics parameters for PK-PD modeling
- Major barriers restricting efficacious siRNA delivery are highly dependent on the delivery modality employed and tissue being targeted
- As the first siRNA modality is set for approval, the future landscape of siRNA is continually evolving

